

TEMEL ATÖLYE UYGULAMALARI

<mark>201</mark>5

İÇİNDEKİLER :

LED UYGULAMALARI	5
TRAFİK LAMBASI	9
TAKİPÇİ 10 LED	11
RGB LED UYGULAMALARI	13
POTANSİYOMETREDEN DEĞER OKUMAK	17
NTC UYGULAMALARI	19
LDR UYGULAMALARI	21
DC MOTOR UYGULAMALARI	25
STEP MOTOR UYGULAMALARI	29
SERVO MOTOR UYGULAMALARI	31
RTC UYGULAMALARI	33
LCD VE TFT EKRAN UYGULAMALARI	35
YANGIN ALARMI UYGULAMASI	41
SU SEVİYE ÖLÇÜMÜ UYGULAMASI	43
SERİAL.AVAİLABLE () FONKSİYONU UYGULAMASI	45
LCD GÖSTERGELİ TERMOMETRE UYGULAMASI	49

LED UYGULAMALARI

1.1- BUTON İLE LED YAKMA

Açıklama: Arduino nun üzerinde ki 5V ve gnd uçlarını borda bağlayınız. Led in anot ucunu arduino nun 12 nolu pinine, katot ucunu 470 Ω direnç ile gnd ye bağlanır.

Devrede Kullanılan Malzemeler:

- 1 x 470 Ω
- 1 x 10 KΩ
- 1 x çıt çıt buton
- 1 x led
- 1 x Arduino UNO

Devre Şeması:

Devrenin Yazılımı:

// pin numaralarını sabit olarak tanımlıyoruz
const int butonPin = 13; // butonun bağlı olduğu pin numarası
const int ledPin = 12; // LED'in bağlı olduğu pin numarası

```
int buttonDurumu = 0; // Buton girişinin durumu (HIGH veya LOW)
void setup() {
 // Buton pinini giriş olarak ayarlıyoruz:
 pinMode(butonPin, INPUT);
 // LED pinini çıkış olarak ayarlıyoruz
 pinMode(ledPin, OUTPUT);
}
void loop() {
 // Buton durumunu oku
 buttonDurumu = digitalRead(butonPin);
 /* Butona basıldığında butonun durumu HIGH olacaktır. Bu durumda
   LED çıkışını HIGH yapıyoruz. Tersi durumda ise LOW yapıyoruz
   */
  if (buttonDurumu == HIGH) {
   digitalWrite(ledPin, HIGH);
  }
 else {
   digitalWrite(ledPin, LOW);
  }
}
```

1.2 - ALEV EFEKTİ

Açıklama: PWM aracılığıyla, LED'lere titreşen rastgele bir ışık etkisi vereceğiz. Örneğin evinizde ki bir dekoratif şöminede, filmlerde, sahne oyunlarında, model demiryolları vb. gibi yerlerde bu uygulamayı kullanabilirsiniz.

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X Kırmızı LED
- 2 X Sarı LED
- 3 X 220 Ω Direnç

Devre Şeması:


```
// LED'ler Arduino' nun PWM çıkışı veren uçlarına bağlanır
int ledPin1 = 9;
int ledPin2 = 10;
int ledPin3 = 11;
void setup()
{
pinMode(ledPin1, OUTPUT);
pinMode(ledPin2, OUTPUT);
pinMode(ledPin3, OUTPUT);
}
void loop()
{
/* Ana program döngüsü içerisinde LED'lere 0 ile 120 arasında rastgele bir
değer gönderilir; LED parlaklığını tam olarak almak için 135 değeri eklenir
*/
analogWrite(ledPin1, random(120)+135);
analogWrite(ledPin2, random(120)+135);
analogWrite(ledPin3, random(120)+135);
delay(random(100));
}
```

1.3- PWM İle Işık Şiddeti Kontrolü

Açıklama: Led in bağlanacağı pin 3 nolu pwm pinidir. Loop metodu içerisinde for döngüsüyle i sayaç değeri 0 dan başlatılarak 255 e kadar saydırılıyor. Led en az ışık düzeyinden en yüksek düzeye çıkarak bu işlemi devam ettirir. 10 ms lik gecikme süresini değiştirerek gözlemde bulununuz.

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X led
- 1 x 220 Ω

Devre Şeması:


```
const int led=3; // 3 nolu pwm çıkışına led bağlanacak.
void setup()
{
  pinMode(led,OUTPUT); //3 nolu pin çıkış olarak ayarlandı.
}
void loop()
{
  for (int i=0;i<=255;i++)
{
    analogWrite(led,i); //pwm değeri sayaç değişkeni ile belirleniyor.
    delay(10);//10 ms lik gecikme sağlanıyor
}
}
```

Öğrencinin		D	EĞERLENDİRME					
Adı :	Bilgi	TOPL	AM					
Soyadı:	(%)	(%)	(%)) (%)				
Nu :					RAKAM	YAZI		
Sınıfı :								
	Ders Öğre	etmeni:		İmza:				

TRAFİK LAMBASI

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 3 X led (Kırmızı, Sarı, Yeşil)
- 3 x 150 Ω

Devre Şeması:


```
int ledDelay = 10000; // geçişler arasındaki gecikmeye değer atıyoruz
int kirmiziPin = 10;
int sariPin = 9;
int yesilPin = 8;
// LedLeri çıkış olarak tanımlıyoruz
void setup() {
  pinMode(kirmiziPin, OUTPUT);
  pinMode(sariPin, OUTPUT);
  pinMode(yesilPin, OUTPUT);
}
```

```
void loop() {
  digitalWrite(kirmiziPin, HIGH); // öncelikle kırmızı led yanıyor
  delay(ledDelay); // 10 saniye bekler

  digitalWrite(sariPin, HIGH); // sarı led yanar
  delay(2000); // 2 saniye bekler

  // şimdi yeşil ledi yakarak kırmızı ve sarı ledi söndürüyoruz
  digitalWrite(yesilPin, HIGH);
  digitalWrite(kirmiziPin, LOW);
  digitalWrite(sariPin, LOW);
  delay(ledDelay);

  // sarı ledi yakıp yeşil ledi söndürüyoruz
  digitalWrite(sariPin, HIGH);
  digitalWrite(sariPin, LOW);
  delay(2000);

  digitalWrite(sariPin, LOW); // sarı led söner ve döngü baştan başlar
```

}

Açıklama: Sarı ledin yanıp sönme süresi 2 saniyedir. Led sürelerini istediğiniz gibi "delay(.....)" komutu içerisine yazarak değiştirebilirsiniz. Ledler aşağıdaki sırada çalışır.

••••••	 		 	 ••••••
•••••	 		 	
••••••	 	• • • • • • • • • • • • • • • • • • • •	 	

Öğrencinin		D	EĞERLENDİRME			
Adı :	Bilgi	İşlem Basamakları	Süre	TOPL	.AM	
Soyadı :	(%)	(%)	(%)	(%)		
Nu :					RAKAM	YAZI
Sınıfı :						
	Ders Öğre	etmeni:	İmza:			

TAKİPÇİ 10 LED

3

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 10 X led
- 10 X 150 Ω

Devre Şeması:


```
byte ledPin[] = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13}; /* LED pinLeri için dizi
oluşturuyoruz*/
int ledDelay(65); // değişiklikler arasındaki gecikmeyi belirliyoruz
int yon = 1;
int currentLED = 0;
unsigned long degismeZamani;
void setup() {
```

```
for (int x=0; x<10; x++) { // bütün pinleri çıkış olarak tanımlıyoruz
pinMode(ledPin[x], OUTPUT); }
degismeZamani = millis();
}</pre>
```

```
11
```

Arduino Temel Atölye Uygulamaları

```
void loop() {
  if ((millis() - degismeZamani) > ledDelay) {
    changeLED();
    degismeZamani = millis();
    }
    void changeLED() {
    for (int x=0; x<10; x++) { // tüm ledler sönük
    digitalWrite(ledPin[x], LOW);
    }
    digitalWrite(ledPin[currentLED], HIGH);
    currentLED += yon; // yön değerinde arttırıyoruz
    if (currentLED == 9) {yon = -1;}
    if (currentLED == 0) {yon = 1;}
    }
}</pre>
```

Açıklama: Bu uygulamada ledler birbirini sırasıyla takip etmektedir. "currentLED" 9. ve 0. Bite bağlı ledin lojik 1 durumuna göre yön değiştirmektedir. Ledlerin hızını bir potansiyometre ile kontrol etmek istiyorsanız aşağıdaki bağlantıyı yaparak verilen kodları ekleyin.

Notlar:

Öğrencinin		D	eğerlendirme							
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	AM				
Soyadı :	(%)	(%)	(%)	(%)						
Nu :					RAKAM	YAZI				
Sınıfı :										
	Ders Öğre	Ders Öğretmeni:								

RGB LED UYGULAMALARI

Devrede Kullanılan Malzemeler:

- 1 X Arduino uno
- 3 X 330 Ω
- 1 X 1 KΩ
- 1 X RGB led
- 1 X çıt çıt buton

Açıklama: Kullandığımız RGB LED anotları ortak bağlanmış 3 LED' in tek bir kılıf içerisine yerleştirilmiş halidir. Üç rengin ışık şiddeti dijital olarak kontrol etmemiz mümkündür. Ayrıca PWM tekniği kullanılarak istenilen renkler elde edilebilir.

Devre Şeması:

Devrenin Yazılımı - 1:

/*İlk olarak yukardaki devreyi kuracağız ve RGB LED' in her rengini 1 saniye aralıklarla yakıp söndüreceğiz. Eğer beyaz ışık görüntülemek istiyorsak tüm LED' leri açmamız gerekir.*/

const int MaviLed=11; //mavi ledi 11 nolu pine bağlıyoruz

```
const int YesilLed=10; //yeşil ledi 10 nolu pine bağlıyoruz
const int KirmiziLed=9; //kırmızı ledi 9 nolu pine bağlıyoruz
// LED' lerin bağlı olduğu pinleri çıkış olarak tanımlıyoruz ;
void setup()
{
pinMode(MaviLed,OUTPUT);
pinMode(YesilLed,OUTPUT);
pinMode(KirmiziLed,OUTPUT);
}
// Döngüyü başlatıyoruz
void loop()
{
  //Kırmızı rengi görüntülüyoruz
digitalWrite(MaviLed,HIGH);
digitalWrite(YesilLed,HIGH);
digitalWrite(KirmiziLed,LOW);
  delay(1000);
  //Yeşil rengi görüntülüyoruz
digitalWrite(MaviLed,HIGH);
digitalWrite(YesilLed,LOW);
digitalWrite(KirmiziLed,HIGH);
  delay(1000);
//Mavi rengi görüntülüyoruz
digitalWrite(MaviLed,LOW);
digitalWrite(YesilLed,HIGH);
digitalWrite(KirmiziLed,HIGH);
delay(1000);
//Tüm ledleri aktif hale getirerek beyaz rengi görüntülüyoruz.
digitalWrite(MaviLed,LOW);
digitalWrite(YesilLed,LOW);
digitalWrite(KirmiziLed,LOW);
delay(1000);
}
```

Devrenin Yazılımı – 2:

```
/*Bu yazılımda her butona basılmasıyla pwm tekniğini kullanarak ara renkler
elde edeceğiz.*/
const int BlueLed=11;
const int GreenLed=10;
const int RedLed=9;
const int buton=4;
boolean oncekiBtnDurum=LOW;
boolean simdikiBtnDurum=LOW;
int ledModu=0;
void setup()
{
pinMode(BlueLed,OUTPUT);
pinMode(GreenLed,OUTPUT);
pinMode(RedLed,OUTPUT);
pinMode(buton,INPUT);
}
boolean butonKontrol(boolean durum)
{
  boolean simdikiBtn = digitalRead(buton);
  if(durum!=simdikiBtn)
  {
    delay(5);
    simdikiBtn=digitalRead(buton);
  }
  return simdikiBtn;
}
void rgbAyarla(int renk)
{
//kırmızı
if(renk==1)
{
digitalWrite(BlueLed,HIGH);
digitalWrite(GreenLed,HIGH);
digitalWrite(RedLed,LOW);
}
else if(renk==2)
{
digitalWrite(BlueLed,LOW);
digitalWrite(GreenLed,HIGH);
digitalWrite(RedLed,HIGH);
}
else if(renk==3)
{
digitalWrite(BlueLed,HIGH);
digitalWrite(GreenLed,LOW);
digitalWrite(RedLed,HIGH);
}
else if(renk==4)
{
```

```
analogWrite(BlueLed,127);
analogWrite(GreenLed,0);
analogWrite(RedLed,127);
}
else if(renk==5)
{
analogWrite(BlueLed,127);
analogWrite(GreenLed,127);
analogWrite(RedLed,0);
}
else if(renk==6)
{
analogWrite(BlueLed,0);
analogWrite(GreenLed,127);
analogWrite(RedLed,127);
}
}
void loop()
{
  simdikiBtnDurum=butonKontrol(oncekiBtnDurum);
  if(oncekiBtnDurum==LOW && simdikiBtnDurum==HIGH)
  {
  ledModu++;
  }
  oncekiBtnDurum=simdikiBtnDurum;
  if(ledModu==7)
    ledModu=0;
```

```
rgbAyarla(ledModu);
```

}

•••••	•••••	•••••	••••	•••••		• • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •	••••	•••••	 	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • •	••••	•••••	 •••••	••••••	•••••
•••••	•••••		•••••	•••••	•••••	• • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • •	•••••	•••••	 	•••••	•••••
•••••	•••••		•••••				•••••	•••••	• • • • • • • • • • •	•••••		 		•••••
•••••	•••••		••••				•••••	•••••	• • • • • • • • • • • •	••••	•••••	 	••••••	
•••••	•••••		•••••				•••••			•••••		 		

Öğrencinin		D	EĞERLENDİRME			
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	AM
Soyadı :	(%)	(%)	(%)	(%)		
Nu :					RAKAM	YAZI
Sınıfı :						
	Ders Öğre	etmeni:			İmza:	

POTANSİYOMETREDEN DEĞER OKUMAK

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X 100 KΩ POT

Açıklama: Potansiyometre değişen direnç değeri ile bu uygulamada gerilim bölücü olarak çalışır.
 Ayar ucundan alınan analog değerleri dijitale çevirmek için analogRead() komutunu kullanacağız. Potun verdiği her değeri PC ortamına aktarıp serial monitörde gözlemleyeceğiz.
 Okunan değer 10 bit olduğu için 2¹⁰ = 1024 farklı değer alır. Giriş voltajı 5V olduğunda üretilen dijital verinin değeri 1023 olur. Her 1 saniyede okunan değer PC' ye gönderilir. Bu değerleri görüntülemek için Arduino IDE programındaki

Devre Şeması:

Devrenin Yazılımı:

```
const int POT=0; // pot 0 nolu analog girişe bağlı
int deger=0; // başlangıç değeri 0 olan deger değişkeni tanımlıyoruz
void setup()
{
    Serial.begin(9600); /* serial monitörden potun değerini görebilmek için
bu komut satırını ekleyerek 9600 baud hızına ayarlıyoruz */
}
void loop()
{
    deger=analogRead(POT); /*pottan okunan değeri deger değişkenine dijitale
    çevrilmiş halde aktarıyoruz*/
```

Serial.println(deger); /* deger değişkeninin içerisindeki değeri PC
ortamında gözlemliyoruz */

```
delay(1000);
```

Notlar:

}

•••••	•••••	• • • • • • • • • • • •	•••••	•••••		 • • • • • • • • • • • •	•••••		••••	•••••	• • • • • • • • • • • •	•••••	
•••••	•••••	• • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • •	 • • • • • • • • • • • • •	•••••	• • • • • • • • • • • •	••••	•••••	• • • • • • • • • • •	•••••	•••••
•••••	•••••	• • • • • • • • • • • • •		•••••		 • • • • • • • • • • • •	•••••	• • • • • • • • • • • •	••••	•••••	• • • • • • • • • • •	•••••	•••••
•••••	•••••	• • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • •	 • • • • • • • • • • • •	•••••	• • • • • • • • • • • •	••••	•••••	• • • • • • • • • • •	•••••	
•••••	•••••	• • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • •	 •••••	•••••	• • • • • • • • • • • •	••••	•••••	• • • • • • • • • • •	•••••	•••••
••••	•••••	• • • • • • • • • • • •	•••••	•••••	•••••	 •••••		•••••	•••••	•••••	•••••	•••••	
•••••	•••••	• • • • • • • • • • • • •		•••••	• • • • • • • • • • • • •	 • • • • • • • • • • • •	•••••		••••	•••••	• • • • • • • • • • • •	•••••	
•••••	•••••			•••••		 				•••••	• • • • • • • • • • •	•••••	
•••••	•••••	• • • • • • • • • • • • •		•••••		 				•••••	• • • • • • • • • • • •	•••••	

Öğrencinin		D	EĞERLENDİRME			
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	AM
Soyadı :	(%)	(%)	(%)	(%)		
Nu :					RAKAM	YAZI
Sınıfı :						
	Ders Öğre	etmeni:		İmza:		

NTC UYGULAMALARI

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X NTC
- 3 X LED (KIRMIZI, YEŞİL, MAVİ)
- 4 X 560 Ω

Açıklama: NTC' ler (**N**egative **T**emperature **C**oefficient) sıcaklığı arttıkça direnci azalan devre elemanlarıdır. Ntc' den okumak istediğimiz analog gerilimi alabilmemiz için, değişen direnç değerini gerilim bölücü direnç sayesinde analog gerilime dönüştürmemiz gerekir.

Aşağıdaki devremizde ntc ile 560 Ω' luk direncin birleştiği yerden A0 pinine bağlantı sağlanarak gerilim bölücü elde edilmiştir. Ntc' nin oda sıcaklığındaki direnci 500 Ω civarında olduğundan sıcaklık arttıkça A0 pinine giden gerilim düşecektir. Bu sayede elde ettiğimiz analog sinyalleri yazılımla yorumlayacağız.

Devre Şeması:


```
int sensorSicaklik=0; /*sensörden okunan gerilim değeri bu değişkene
kaydedilir*/
int kirmiziLed=9; //kirmizi ledin bağlı olduğu pin
int yesilLed=10; //yeşil ledin bağlı olduğu pin
int maviLed=11; //mavi ledin bağlı olduğu pin
void setup()
{
```

```
Serial.begin(9600); //Seri iletisim ayarlarını yapıyoruz
  //ledlerin bağlı olduğu pinleri çıkış olarak ayarlıyoruz
  pinMode(kirmiziLed,OUTPUT);
  pinMode(yesilLed,OUTPUT);
  pinMode(maviLed,OUTPUT);
}
void loop()
{
  sensorSicaklik=analogRead(0); //sensörden gelen veriyi okuyoruz
  if(sensorSicaklik > 400 && sensorSicaklik < 520) /*okunan değer 520 ile
400 arasında ise*/
  {
    digitalWrite(yesilLed,LOW); /*yeşil Led yanar. Ölçülen sıcaklık oda
sıcaklığındadır*/
    digitalWrite(kirmiziLed,HIGH);
    digitalWrite(maviLed,HIGH);
    Serial.println("ölçülen sıcaklık oda sıcaklığında"); /* serial monitörde
göreceğimiz uyarı yazısı*/
  }
  else if(sensorSicaklik > 0 && sensorSicaklik <= 400) /*okunan değer 400
den küçükse*/
  {
    digitalWrite(yesilLed,HIGH);
    digitalWrite(kirmiziLed,LOW); /*kırmızı Led yansın. Ölçülen sıcaklık
oda sıcaklığından yüksek*/
    digitalWrite(maviLed,HIGH);
    Serial.println("ölçülen sıcaklık oda sıcaklığından yüksek"); /* serial
monitörde göreceğimiz uyarı yazısı*/
  }
  else if(sensorSicaklik>520) //okunan değer 520'den büyükse
  {
    digitalWrite(yesilLed,HIGH);
    digitalWrite(kirmiziLed,HIGH);
    digitalWrite(maviLed,LOW); //mavi Led yansın. Ölçülen sıcaklık oda
sıcaklığından düşük
    Serial.println("ölçülen sıcaklık oda sıcaklığından düşük"); /* serial
monitörde göreceğimiz uyarı yazısı*/
  }
  delay(100); // 100ms bekle
```

```
}
```

Öğrencinin		D	EĞERLENDİRME			
Adı :	Bilgi	İşlem Basamakları	Süre	TOPL	AM	
Soyadı :	(%)	(%)	(%)	(%)		
Nu :					RAKAM	YAZI
Sınıfı :						
	Ders Öğre	tmeni:		İmza:		

LDR UYGULAMALARI

7.1 – Işık Etkili RGB LED

Açıklama: LDR' lerin ışık şiddetine bağlı olarak direnç değerleri değişmektedir. Üzerine düşen ışığın şiddetiyle ters orantılıdır. Maksimum ışık şiddetinde direnci minimumken, karanlıkta direnci maksimumdur. Aşağıdaki devrede Potansiyometre ile ldr gerilim bölücü olarak kullanılmıştır. Bu sayede ışık şiddetine göre hassasiyeti ayarlanabilen ışık etkili bir devre oluşturuyoruz. Devrede ldr üzerine düşen gerilim, ışığın şiddetine ve potansiyometrenin ayarına bağlıdır.

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X LDR
- 1 X 10 KΩ POT
- 3 X LED (KIRMIZI, YEŞİL, MAVİ)
- 4 X 560 Ω

Devre Şeması:

Devrenin Yazılımı:

int ldrDeger=0;//sensörden okunan gerilim değerini bu değişkene kaydedeceğiz
int kirmiziLed=11;
int yesilLed=10;

Arduino Temel Atölye Uygulamaları

```
int maviLed=9;
void setup()
{
  Serial.begin(9600); //Seri iletişim ayarları yapılıyor
  pinMode(kirmiziLed,OUTPUT);
  pinMode(yesilLed,OUTPUT);
  pinMode(maviLed,OUTPUT);
}
void loop()
{
  ldrDeger=analogRead(0); //sensörden gelen veri okunuyor
  //okunan değer 500 ile 400 arasında ise ortam ışık şiddeti az seviyede
  if(ldrDeger>400 && ldrDeger<500)
  {
    //yeşil Led yansın.
    digitalWrite(yesilLed,LOW);
    digitalWrite(kirmiziLed,HIGH);
    digitalWrite(maviLed,HIGH);
    Serial.println("ortam isik siddeti az"); /*s.m. de göreceğimiz uyarı
yazısını yazdırıyoruz*/
  }
//okunan değer 400 den küçükse
  else if(ldrDeger>0 && ldrDeger<=400)</pre>
  {
    digitalWrite(yesilLed,HIGH);
    //ışık şiddeti yüksekse kırmızı Led yansın.
    digitalWrite(kirmiziLed,LOW);
    digitalWrite(maviLed,HIGH);
    Serial.println("ortam aydinlik");
  }
  else if(ldrDeger>=500 ) //okunan değer 500'den büyükse
  {
    digitalWrite(yesilLed,HIGH);
    digitalWrite(kirmiziLed,HIGH);
    //hava karardığında mavi Led yansın.
    digitalWrite(maviLed,LOW);
    Serial.println("ortam karanlik");
  }
  delay(200);
}
```

7.2 – Işık Etkisiyle Sesli Geri Bildirim

Açıklama: Bu uygulamada ışığı algılamak için LDR, algılanan ışık miktarına göre sesli geribildirim elde etmek için piezo sounder kullanacağız.

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X Piezo Sounder veya Buzzer
- 1 X LDR (Light Dependent Resistor)
- 1 X 10KΩ Direnç

Devre Şeması:


```
int piezoPin = 8; // Piezonun bağlandığı pin D8
int ldrPin = 0; // LDR' nin bağlandığı pin A0
int ldrValue = 0; // LDR değerini okuyacağımız değişkeni tanımlıyoruz
void setup() {
}
void loop() {
ldrValue = analogRead(ldrPin); // LDR' den analog değeri okuyoruz
tone(piezoPin,1000); // piezodan 1000Hz değerinde ses elde ediyoruz
delay(25);
noTone(piezoPin); // 25ms bekledikten sonra sesi kapatıyoruz
delay(ldrValue); // LDR' den okunan değerin milisaniyesi kadar bekliyoruz
}
```

Öğrencinin		D	EĞERLENDİRME			
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	.AM
Soyadı :	(%)	(%)	(%)	(%)		
Nu :					RAKAM	YAZI
Sınıfı :						
	Ders Öğre	etmeni:			İmza:	

DC MOTOR UYGULAMALARI

8.1- Potansiyometre ile DC Motor Hız Kontrolü

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X DC motor
- 1 X 1 KΩ Direnç
- 1 X 1 KΩ POT
- 1 X 1 N 4001
- 1 X 1μf
- 1 X BC237 Transistör
- 9 V pil

Açıklama: Bu devremizde **A0** pinine bağlı potun orta ucu, potun değeri değiştikçe 0 – 5V arasında gerilimler üretir. ADC sonucu çıkan sayısal değerler aralığı 0 – 1023 arasındadır. Aşağıdaki kodumuzda **map** fonksiyonu kullanarak **deger** değişkeninin 0 – 1023 arasındaki değerler 0 – 255 arasında sınırlandırılmıştır. Bunun amacı pwm değerinin 0 – 255 arasında olabilmesidir. Buna göre pottan okunan değer 0 – 255 arasında pwm çıkışı olarak transistorun beyzine aktarılır.

Devre Şeması:


```
const int motorPin=9; // Motoru kontrol edecek pwm pinini tanımlıyoruz
const int pot=0; //potun ayar ucunun bağlandığı A0 girişi
int deger =0;
               //Analog giriş değerini saklayan değişken
void setup()
{
 pinMode(motorPin,OUTPUT); //pwm pini cikis olarak ayarlaniyor
}
void loop()
{
 deger=analogRead(pot); /*A0 girişinden analog değer okunup dijitale
dönüştürülüyor*/
/* map metodu ile deger değişkenin değerinin 0 ila 1023 arasındaki
karşılığı 0 ila 255 arasında sınırlandırılıyor */
  deger=map(deger,0,1023,0,255);
  analogWrite(motorPin,deger); /* motorun hızı deger değişkeni içerisindeki
verinin değerine göre hızlanır veya yavaşlar */
  delay(10);
}
```

8.2- L298 İle Motor Hız ve Yön Kontrolü

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X DC motor
- 4 X 1 N 4001
- 1 X L298 Motor Sürücü

Açıklama: Aşağıdaki devrede **L298** entegresinin sadece A köprüsü kullanılmıştır. A köprüsü için; motor uçları out1 ve out2 çıkışına bağlanır. EnA pini Arduino' nun 9 nolu pwm pinine bağlanmıştır. IN1 ve IN2 pinleri motor dönüş yönünü kontrol eder ve Arduino' nun 12. 13. Pinlerine bağlanmıştır. Bu bağlantı şekliyle motorun hem hız hem de yön kontrolünü sağlayacağız.

Devre Şeması:


```
const int ENA=9; //Pwm çıkışı L298 in ENA girişine bağlanıyor
const int IN1=13; //13 nolu pin L298 in in1 girişine bağlanıyor
const int IN2=12; //12nolu pin L298 in in1 girişine bağlanıyor
void setup()
{
    pinMode(ENA,OUTPUT);
    pinMode(IN1,OUTPUT);
    pinMode(IN2,OUTPUT);
}
void loop()
{
    //motoru ileri yönde döndürüyoruz
    digitalWrite(IN1,HIGH);
    digitalWrite(IN2,LOW);
    //for döngüsü ile motorun dönüş hızı pwm ile ayarlanıyor
```

```
for(int i=0;i<=255;i++)</pre>
```

```
{
   //sayaç değişkeninin değeri pwm değeri olarak veriliyor.
   analogWrite(ENA,i);
   delay(100);
}
delay(1000);
//motoru geri yönde döndürüyoruz
digitalWrite(IN1,LOW);
digitalWrite(IN2,HIGH);
//for döngüsü ile motorun dönüş hızı pwm ile ayarlanıyor
for(int i=255;i>=0;i--)
{
   //sayaç değişkeninin değeri pwm değeri olarak veriliyor
   analogWrite(ENA,i);
}
```

```
delay(100);
}
```

••••	 	• • • •	••••	 	• • • •	 		• • • •	 	 	 ••••	 • • • •	• • • •	 ••••	• • • •	••••	 	 • • • •	 	 	 ••••	 	
••••	 			 		 		• • • •	 	 	 	 • • • •	• • • •	 ••••	• • • •	• • • •	 	 • • • •	 	 	 	 	
• • • •	 			 		 			 	 	 	 		 • • • •			 	 	 	 	 	 	
• • • •	 			 		 			 	 	 	 		 		• • • •	 	 	 	 	 	 	
• • • •	 			 		 			 	 	 	 		 			 	 	 	 	 	 	
• • • •	 			 		 			 	 	 	 		 			 	 	 	 	 	 	
	 			 		 	0		 	 	 	 		 0			 	 	 	 	 	 	

Öğrencinin	DEĞERLENDİRME							
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	AM		
Soyadı:	(%)	(%)	(%)	(%)				
Nu :					RAKAM	YAZI		
Sınıfı :								
	Ders Öğre	etmeni:			İmza:			

STEP MOTOR UYGULAMALARI

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X STEP Motor
- 1 X ULN2003A Motor Sürücü

Açıklama: Aşağıdaki devrede step motorun çalışması için gereken; motorun bobinlerine sırayla Arduino üzerinden pals' ler göndermek ve motor sürücü entegresi bu pals' leri lojik olarak tersleyerek step motora aktarır, motorun dönmesini sağlar. Biz bu uygulamada step motor kullanmak için hazır kütüphaneden faydalanacağız. Hazır kütüphane kullanımı bir çok uygulamada kodları hızlı bir şekilde hazırlamamızı sağlar.

Devre Şeması:

Devrenin Yazılımı:

#include <Stepper.h>
//motor pinleri için değişkenler tanımlanıyor
int motorPin1 = 8; // Mavi pin 1
int motorPin2 = 9; // Pembe pin 2
int motorPin3 = 10; // Sarı pin 3
int motorPin4 = 11; // Turuncu pin 4

```
#define ADIM 32 //Bir turda attığı adım sayısı
//Kullanılan step motor 28BYJ48 ise 4 pin ile bağlantısı sağlanır.
Stepper stepKontrol(ADIM, motorPin1, motorPin3, motorPin2, motorPin4);
int adimSayisi;
void setup()
{
  stepKontrol.setSpeed(400); //Motorun hizi tanimLaniyor
}
void loop()
{
  stepKontrol.setSpeed(200); //Motorun dönüş hızı belirtiliyor
  adimSayisi = 2048; // Saat yönünde atılacak adim sayısı
  stepKontrol.step(adimSayisi);/*motorun adimSayisi kadar adim atması
isteniyor*/
  delay(2000);
  stepKontrol.setSpeed(200);
  adimSayisi = -2048; // Motorun ters yönde atacağı adım belirleniyor
  stepKontrol.step(adimSayisi);
  delay(2000);
```

	r	

 • • •	 • • •	 	 	 	• • •	 	• • • •	 	 ••••	 • • •	 	 	 •••	 	 	 	 	 	 	 	 	
 	 	 	 	 		 		 	 	 	 	 	 •••	 	 	 	 	 	 	 	 	
 	 • • •	 	 	 	•••	 		 	 	 •••	 	 	 •••	 ••••	 	 	 	 	 	 	 	
 	 	 	 	 		 		 	 	 	 	 	 • • •	 	 	 	 	 	 	 	 	

Öğrencinin		DEĞERLENDİRME							
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	AM			
Soyadı :	(%)	(%)	(%)	(%)					
Nu :					RAKAM	YAZI			
Sınıfı :									
	Ders Öğre	etmeni:			İmza:				

SERVO MOTOR UYGULAMALARI

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X 7805
- 9 Volt pil
- Servo motor
- 10 KΩ pot

Açıklama: Uygulamamızda kullandığımız motor türü, verilen komuta göre açısal olarak hareket eder ve istediğimiz pozisyonda kalabilir. 3 bağlantı pinine sahiptirler. Bu pinler, GND (kahve, siyah), 5V (kırmızı) ve sinyal ucudur (beyaz ya da turuncu). Biz devremizde motorun beslemesini harici bir güç kaynağından vereceğimiz için 7805 regülatör entegresi kullanacağız. Aşağıdaki devrede potansiyometreden okunan 0 – 1023 arasındaki analog verilerin karşılığı olan değerler, map metoduyla 0 – 179 derece arasında sınırlandırılır. Bu sayede potansiyometrenin değeri değiştikçe servo motor 0 – 180 derece arasında hareket eder.

Devre Şeması:

Devrenin Yazılımı:

```
#include <Servo.h>
const int ServoPals = 9; //servoyu kontrol edecek pals cikis pini
                            //Potun bağlanacağı adc pini
const int Pot=0;
                            //Servo sınıfından bir nesne oluşturuyoruz
Servo servoKontrol;
int deger=0;
                            //adc nin okuduğu değeri tutacak değişken
void setup()
{
  servoKontrol.attach(ServoPals); /*servokontrol nesnesine hangi pinden
pals çıkışı alınacağı belirtiliyor */
}
void loop()
{
 deger=analogRead(Pot); //potansiyometreden değer okunuyor
 deger=map(deger,0,1023,0,179); /* 0 ila 1023 arasında okunan değeri 0
ila 179 derece arasında sınırla */
  servoKontrol.write(deger); /*write metodu ile o anki deger açısı ile
motor hareket eder*/
 delay(15);
}
```

••••	 	 	 	 	 	 	

Öğrencinin	DEĞERLENDİRME							
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	AM		
Soyadı :	(%)	(%)	(%)	(%)				
Nu :					RAKAM	YAZI		
Sınıfı :								
	Ders Öğre	etmeni:			İmza:			

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X RTC Modülü

Açıklama: *Real Time Clock* (gerçek zaman bilgisi) ile uygulamalarımızda zaman bilgisini kullanabiliriz. Örneğin istenen gün/tarih/saat/dakika da çalışmasını istediğimiz bir röleyi programlayabilir ya da sensörden okunan verinin hangi zaman diliminde hangi değerleri aldığını RTC ile kolaylıkla görebiliriz.

Devre Şeması:


```
/* RTC modülden saat ve tarih bilgisini okuyacağız
#include "Wire.h" // I2C için gerekli wire kütüphanesi
ekleniyor.
#define DS1307_ADRES 0x68 //ds1307 nin adres bilgisi belirtiliyor.
void setup(){
   Wire.begin();
   Serial.begin(9600);
}
void loop(){
```

```
tarihsaatYazdir(); //anlık tarih ve saat bilgisini yazdır.
  delay(1000);
}
byte bcdToDec(byte val) {
  // binary olarak kodlanmış desimal veri (BCD) desimale çevriliyor.
  return ( (val/16*10) + (val%16) );
}
void tarihsaatYazdir(){
  // Register sayacı resetlenir.
  Wire.beginTransmission(DS1307_ADRES);
  byte zero = 0 \times 00;
  Wire.write(zero);
  Wire.endTransmission();
  Wire.requestFrom(DS1307 ADRES, 7); /*Belirtilen adresten itibaren 7 byte
veri okunması isteniyor.*/
  int saniye = bcdToDec(Wire.read()); //Okunan ilk veri, saniye
  int dakika = bcdToDec(Wire.read()); //Okunan ikinci, dakika
  int saat = bcdToDec(Wire.read() & 0b11111); //24 saat sistemine göre saat
verisi
  int haftaninGunu = bcdToDec(Wire.read()); //0-6 -> 0.gün pazar. 6. gun
cumartesi
  int gun = bcdToDec(Wire.read()); //ayın kaçıncı gunu olduğu
  int ay = bcdToDec(Wire.read()); //yılın hangi ayı olduğu
  int yil = bcdToDec(Wire.read()); //hangi yılda olduğu verilerini ayarlar.
  //şu anda yüklü olan saat ve tarihi görüntüler
  Serial.print(ay);
  Serial.print("/");
  Serial.print(gun);
  Serial.print("/");
  Serial.print(yil);
  Serial.print(" ");
  Serial.print(saat);
  Serial.print(":");
  Serial.print(dakika);
  Serial.print(":");
  Serial.print(saniye);
  Serial.print("haftanin gunu:");
  Serial.println(haftaninGunu);
```

```
}
```

Öğrencinin		DEĞERLENDİRME							
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	AM			
Soyadı:	(%)	(%)	(%)	(%)					
Nu :					RAKAM	YAZI			
Sınıfı :									
	Ders Öğre	tmeni:			İmza:				

LCD VE TFT EKRAN UYGULAMALARI

Açıklama: LCD ekranda 16 bağlantı pini vardır. 16 sütun, 2 satırdan oluşan bu ekran aynı anda 32 karakter görüntüleyebilir. Paralel LCD modüllerde 8 adet data gönderim hattı (DB0....DB7) bulunmaktadır. LCD ekran pinleri aşağıdaki gibidir.

PİN NUMARASI	PİN İSMİ	PİN ÖZELLİĞİ
1.	VSS	GND
2.	VDD	+5 Volt
3.	VO	Arka plan ışık kontrastı
4.	RS	Register seçici (Karakter/Komut)
5.	RW	Read/Write
6.	EN	Enable
7.	DO	
8.	D1	
9.	D2	
10.	D3	Data hatları
11.	D4	
12.	D5	
13.	D6	
14.	D7	
15.	A	Arka ışık anot
16.	К	Arka ışık katot

- Register seçici pini (**RS**) ile LCD ye komut ya da karakter verisi gönderilebilir. Sonraki satıra geçmesi ya da istenilen sütundan itibaren yazdırma işlemi için komut kullanılır.
- **RW** pini **GND**' ye bağlanarak LCD ekrana yazma işlemi yapılır. Okuma işlemi yapılmaz.
- **EN** pini LCD' ye veri hazır olduğunu söyler.
- Data pinleri D4-D7 veri göndermek için kullanılır (D0-D3 arasındaki pinler kullanılmaz).
- LCD ekranın arka plan ışığını açmak için **5V A** pinine ve **GND K** pinine bağlanır.

Aşağıda Arduino ve LCD pin bağlantıları verilmiştir.

LCD PIN	ARDUINO PIN
RS	PIN2
EN	PIN3
D4	PIN4
D5	PIN5
D6	PIN6
D7	PIN7

12.1- LCD Ekrana Veri Göndermek

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X LCD Ekran
- 100 KΩ pot

Devre Şeması:


```
#include <LiquidCrystal.h>
                            //LCD kütüphanesi ekleniyor
int time=0;
                 //Başlangıç zamanı 0 olarak ayarlandı
//LCD ekran ayarları yapılyor
LiquidCrystal LCD(2,3,4,5,6,7);
void setup()
{
//16x2 ekran kullanılıyor.
  LCD.begin(16,2);
  //Lcd ekrana veri yazdırılıyor
  LCD.print("**GIRESUN MTAL**");
}
void loop()
{
// cursoru 2. Satıra çekiyoruz
  LCD.setCursor (0,1);
// anlık zaman sayıcı ekrana yazdırılıyor
LCD.print(time);
//1 saniye bekleniyor
delay(1000);
//zaman sayacı 1 arttırılıyor
time++;
}
```

12.2- Grafik LCD Ekrana Sıcaklık Değeri Yazdırma

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X Grafik LCD Ekran
- 1 X LM35

Devrenin Şeması:

//	SCK	-	Pin	13
//	MOSI	-	Pin	11
//	DC	-	Pin	9
//	RST	-	Pin	8
//	CS	-	Pin	10

```
#include <LCD5110_Basic.h> //Kütüphaneyi ekliyoruz
LCD5110 myGLCD(13,11,9,8,10);
extern uint8_t SmallFont[]; //küçük font seçiliyor
float sicaklik;
                       //ölçülen sıcaklık değeri değişkeni
int sensor=1;
                 //lm35'in bağlı olduğu analog giriş
void setup()
{
  myGLCD.InitLCD(); //lcd ekran ayarları yapılıyor
}
void loop()
{
  sicaklik = analogRead(sensor);
  sicaklik = sicaklik * 0.48828125;
  myGLCD.setFont(SmallFont); //Yazı Font Boyutu seçilir.
  myGLCD.print("SICAKLIK=",LEFT,0);/*Sicaklik yazisi en sola yasli, y
düzleminde 0 mesafe*/
  myGLCD.printNumF(sicaklik,2,RIGHT,0); /*Sicaklik değeri virgülden sonra 2
digit gösterilecek, en sağa yaslı yazılır.*/
  delay(1000);
}
```

12.3- TFT Ekrana Veri Yazdıra ve Şekil Çizme

Açıklama: Bu uygulamada kullanacağımız dokunmatik ekran SSD1289 LCD ekran sürücüsüne sahiptir. Modüldeki dokunmatik panel kontrolü ve kart okuyucu SPI veri yolu kullanarak iletişim sağlarken, ssd1289 LCD ekran paralel veri iletişimi kullanmaktadır. Aşağıda TFT ekran ve Arduino Mega2560 bağlantıları verilmiştir.

TFT EKRAN PİNLERİ	ARDUİNO PİNLERİ
LED-A	5V arka plan ışığı
VCC	Besleme gerilimi (3V3)
RD	3V3 ile HIGH konumda tutulur
GND	GND
DB0, DB1, DB2, DB3, DB4, DB5, DB6, DB7	D37, D36, D35, D34, D33, D32, D31, D30 VERİ
	PİNLERİ
DB8, DB9, DB10, DB11, DB12, DB13, DB14, DB15	D22, D23, D24, D25, D26, D27, D28, D29 VERİ
	PİNLERİ
RS (REGISTER SEÇİCİ)	D38
WR	D39
CS (PIN 15)	D40
REST	D41

Devrede Kullanılan Malzemeler:

- 1 X Arduino MEGA2560
- 1 X TFT Ekran

```
#include <UTFT.h>
// kullanılacak fontlar bildiriliyor.
extern uint8_t SmallFont[];
extern uint8_t BigFont[];
extern uint8 t SevenSegNumFont[];
// bu değerler kullandığınız dokunmatik ekranın özelliğine göre değişebilir.
UTFT myGLCD(ITDB32S,38,39,40,41);
void setup()
{
  myGLCD.InitLCD();
  myGLCD.clrScr();
}
void loop()
{
  myGLCD.setColor(65, 255, 0);
  myGLCD.setBackColor(125,35, 50);
  myGLCD.fillScr(30,60,120);
  myGLCD.setFont(BigFont);
  myGLCD.print("GIRESUN", CENTER, 32);
  myGLCD.setFont(BigFont);
  myGLCD.print("ARDUINO UYGULAMALARI", CENTER, 202);
  myGLCD.drawRoundRect(5,5,315,235);
  myGLCD.drawCircle(160,120,45);
  myGLCD.fillCircle(160,120,15);
```

while(1) { };

}

Öğrencinin		D	EĞERLENDİRME			
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	AM
Soyadı :	(%)	(%)	(%)	(%)		
Nu :					RAKAM	YAZI
Sınıfı :						
	Ders Öğre	etmeni:			İmza:	

YANGIN ALARMI UYGULAMASI

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X LM35
- 2 X Led (Kırmızı, Yeşil)
- 2 X 330 Ω Direnç
- 1 X Buzzer

Açıklama:

Devre Şeması:


```
int lm35_pin=A1;
int yesil_led=11;
int kirmizi_led=5;
int buzzer_alarm=2;
void setup()
{
```

Arduino Temel Atölye Uygulamaları

```
pinMode(lm35_pin,INPUT);
pinMode(yesil_led,OUTPUT);
pinMode(kirmizi_led,OUTPUT);
pinMode(buzzer_alarm,OUTPUT);
digitalWrite(yesil_led,HIGH);
}
void loop()
{
  float lm35_okunan_deger=analogRead(lm35_pin);
  float analog_sicaklik=(lm35_okunan_deger/1023)*5000;
  float dijital_sicaklik=analog_sicaklik/10.0;
  if(dijital_sicaklik>50)
  {
    tone(buzzer_alarm,300);
    digitalWrite(kirmizi_led,HIGH);
    digitalWrite(yesil_led,LOW);
  }
  else
  {
    noTone(buzzer_alarm);
   digitalWrite(yesil_led,HIGH);
   digitalWrite(kirmizi_led,LOW);
  }
}
```

	 					 • • •	• • •	 	 	 		• • •			 • • •	 	•••						• • •	 • • •	• • •		• • •	• • •		 	 		••••	 	 	 		
	 					 •••		 	 	 		• • •			 	 	•••							 • • •			• • •			 	 			 	 	 		
	 					 •••		 	 	 		• • •			 	 	•••							 • • •			• • •			 	 			 	 	 		
••••	 	•••	• • •	•••	•••	 •••	• • •	 	 	 	•••	•••		•••	 • • •	 • • •	•••		• • •	• • •	• • •	•••	•••	 •••	•••	•••	• • •	• • •		 	 	•••		 	 	 		
••••	 	•••	• • •	•••	•••	 •••	• • •	 	 	 	•••	•••		•••	 • • •	 • • •	•••		• • •	• • •	• • •	•••	•••	 •••	•••	•••	• • •	• • •	• • •	 	 	•••		 	 	 	• • • •	
	 	•••	• • •		•••	 • • •	• • •	 	 	 	• • •	•••	• • • •	• • •	 • • •	 	•••	• • • •	• • •	• • •	• • •	•••	•••	 •••	•••	•••	• • •	• • •		 	 			 	 	 		
	 					 • • •		 	 	 					 	 	•••							 • • •			• • •			 	 			 	 	 		
	 					 • • •		 	 	 					 	 	•••							 • • •			• • •			 	 			 	 	 		
	 					 • • •		 	 	 					 	 	•••							 • • •			• • •			 	 			 	 	 		
	 				• • •	 • • •		 	 	 		• • •			 • • •	 	•••					•••	• • •	 •••	• • •	•••	• • •			 	 			 	 	 		
••••	 				•••	 • • •		 	 	 	•••	•••			 • • •	 	•••					•••	•••	 •••	•••	•••	•••			 	 			 	 	 		

Öğrencinin		D	EĞERLENDİRME			
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	AM
Soyadı:	(%)	(%)	(%)	(%)		
Nu :					RAKAM	YAZI
Sınıfı :						
	Ders Öğre	etmeni:			İmza:	

SU SEVİYE ÖLÇÜMÜ UYGULAMASI

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X Su Seviye Sensörü
- 1 X Led
- 1 X 470 Ω Direnç

Açıklama: Su seviye sensörünün çalışma mantığı; bakır plakalar arasında normal şartlarda elektriksel olarak bağlantı yokken, su içerisinde çalışmaya başladığında bakır plakalar arasında ki su seviyesine göre üzerinden geçen elektrik akımı artmakta böylece çıkış ucundan, su seviyesine göre değişen analog gerilim elde edilmektedir. Bu gerilim 0 – 3.3 Volt arasında değişim gösterir.

Devre Şeması:

Devrenin Yazılımı:

```
const int giris=0;
int deger=0;
const int led=2;
void setup()
{
  Serial.begin(9600);
  pinMode(led,OUTPUT);
}
void loop()
{
  deger=analogRead(giris);
  if(deger>512)
  {
    digitalWrite(led,HIGH);
    Serial.println("sivi seviyesi degeri:");
    Serial.println(deger);
  }
  else
  {
    digitalWrite(led,LOW);
    Serial.println("sivi seviyesi degeri:");
    Serial.println(deger);
  }
  delay(50);
}
```

•••	•••	• • •	• • •	• • •	•••	•••	 	 	 •••	 	 	 • • •	 •••	•••	 	• • •	 	 	 	 • • •	• • •	 	 •••	 	 	 • • • •	 • • • •	 • • • •	• • • •	 ••
					• • •	•••	 	 	 	 	 	 • • •	 	• • •	 		 	 	 	 		 	 	 	 	 	 	 		 ••
			•••		• • •	• • •	 	 	 •••	 	 	 • • •	 • • •	• • •	 	• • •	 	 	 	 		 	 • • •	 	 	 	 	 		
			•••		• • •	• • •	 	 	 •••	 	 	 • • •	 • • •	• • •	 	• • •	 	 	 	 		 	 • • •	 	 	 	 	 		
					• • •		 	 	 	 	 	 	 	• • •	 		 	 	 	 		 	 	 	 	 	 	 		
					• • •		 	 	 	 	 	 	 	• • •	 		 	 	 	 		 	 	 	 	 	 	 		
					• • •		 	 	 	 	 	 	 	• • •	 		 	 	 	 		 	 	 	 	 	 	 		
					•••	• • •	 	 	 •••	 	 	 	 •••	•••	 	• • •	 	 	 	 		 	 	 	 	 	 	 		
					• • •	• • •	 	 	 	 	 	 	 	• • •	 	• • •	 	 	 	 		 	 • • •	 	 	 	 	 		 ••
					• • •	• • •	 	 	 	 	 	 	 	• • •	 	• • •	 	 	 	 		 	 • • •	 	 	 	 	 		 ••

Öğrencinin		D	EĞERLENDİRME			
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	AM
Soyadı:	(%)	(%)	(%)	(%)		
Nu :					RAKAM	YAZI
Sınıfı :						
	Ders Öğre	tmeni:			İmza:	

SERİAL.AVAİLABLE () FONKSİYONU UYGULAMASI

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 4 X Led
- 4 X 470 Ω Direnç

Açıklama: Bu uygulamada seri haberleşme üzerinden gönderilen karakterlere göre istenilen LED'i yakan bir program üzerinde bu fonksiyonun nasıl çalıştığını göreceğiz. Arduino ya bağlı 4 ledi seri haberleşme üzerinden ASCII karakterlerine göre yakıp söndüreceğiz. Gönderilen karakterlerden her biri (A,B,C,D) bir ledi kontrol edecek. Karakterleri göndermek için serial monitörü kullanacağız. SM penceresindeki üst bölüme göndereceğimiz karakteri yazıp Send butonuna bastığımızda yazdığımız karakter Arduino ya gönderilecektir.

Devre Şeması:

Devrenin Yazılımı:

Serial Monitor üzerinden gönderilen karakterlere göre 4 LED'den birisinin d urumu değiştirilir.

Bağlantılar: Arduino Dijital 9 - LED1 Arduino Dijital 10 - LED2 Arduino Dijital 11 - LED3 Arduino Dijital 12 - LED4

```
Gönderilecek Karakterler:
A \Rightarrow 1.LED
 B \Rightarrow 2.LED
C \Rightarrow 3.LED
 D \Rightarrow 4.LED
 // Gelen verinin aktarılacağı karakter değişkeni
char karakter = 0;
//LED Pinlerinin numaralari
const byte LEDpinleri[4] ={ 9,10,11,12};
// LED'lerin durumlarını tutan değişkenler
// true = LED Yanık, false = LED Sönük
boolean LEDDurum[4] ={ false,false,false,false};
void setup() {
  Serial.begin(9600); // Seri haberleşmeyi başlatıyoruz(9600 bps)
  pinMode(LEDpinleri[0],OUTPUT);
  pinMode(LEDpinleri[1],OUTPUT);
  pinMode(LEDpinleri[2],OUTPUT);
  pinMode(LEDpinleri[3],OUTPUT);
}
void loop() {
 // Veri gelmiş mi?
  if (Serial.available() > 0) {
   // gelen veriyi oku
    karakter = Serial.read();
    // Gelen karakteri yazdır
    Serial.print("Gelen karakter: ");
    Serial.println(karakter);
    //Gelen Karakterler göre ilgili LED'i yakıyoruz
    switch(karakter)
    {
    case 'A':
      LEDDurumDegistir(0);
      break;
    case 'B':
      LEDDurumDegistir(1);
      break;
    case 'C':
      LEDDurumDegistir(2);
      break;
    case 'D':
      LEDDurumDegistir(3);
      break;
    default:
      Serial.println("Gecersiz bir karakter gonderildi!");
```

```
break;
    }
  }
}
/* Fonksiyona girilen LEDno değerine göre
 ilgili LED'in durumunu değiştirir.
 (LED Yanıyorsa söndürür, sönükse yakar).
 */
void LEDDurumDegistir(int LEDno)
{
  if(LEDDurum[LEDno] == false)
  {
    digitalWrite(LEDpinleri[LEDno],HIGH);
    LEDDurum[LEDno] = true;
    Serial.print(LEDno);
    Serial.println("nolu LED yakildi!");
  }
  else
  {
    digitalWrite(LEDpinleri[LEDno],LOW);
    LEDDurum[LEDno] = false;
   Serial.print(LEDno);
   Serial.println("nolu LED sonduruldu!");
  }
```

}

• • • • • •	 	 	 	 	 	 	 	 	• • • •	 	 	 	 	 	 	 	

Öğrencinin		D	EĞERLENDİRME			
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	.AM
Soyadı :	(%)	(%)	(%)	(%)		
Nu :					RAKAM	YAZI
Sınıfı :						
	Ders Öğre	etmeni:			İmza:	

LCD GÖSTERGELİ TERMOMETRE **UYGULAMASI**

Devrede Kullanılan Malzemeler:

- 1 X Arduino UNO
- 1 X 10 KΩ pot
- 1 X LM35
- 1 X LCD EKRAN

Devre Şeması:

Devrenin Yazılımı:

16

```
==> digital-12
 * LCD RS
 * LCD Enable ==> digital-11
 * LCD D4 ==> digital-5
 * LCD D5
             ==> digital-4
 * LCD D6
             ==> digital-3
 * LCD D7
             ==> digital-2
 * LCD R/W
             ==> toprak (GND)
 * 10K potansiyometre 0-5V bağlantı:
 * orta ucu LCD'nin V0 pinine(pin 3)
#include <LiquidCrystal.h>
//Değişkenleri tanımlıyoruz
float sicaklik;
float gerilim;
int sicaklikPin = 0;
// LCD bağlantılarımızı ile LCD'yi başlatıyoruz
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
void setup()
{
 Serial.begin(9600); //Seri haberleşmeyi başlat (9600 bps)
 // LCD'mizin başlangıç ayarı 16 karakter x 2 satır
 lcd.begin(16, 2);
}
void loop()
{
 gerilim = analogRead(sicaklikPin); // Sensörden gelen değeri oku
 gerilim = (gerilim / 1023) * 5000; // mV cinsinden gerilimi buluyoruz
  sicaklik = gerilim / 10.0; // Gerilim değerini sıcaklığa çeviriyoruz
  lcd.setCursor(0,0);
 lcd.print("Sicaklik:");
  lcd.setCursor(0,1);
 lcd.print(sicaklik);
                                     //Saniyede bir ölçüm gönderiyoruz
 delay(1000);
}
```

Öğrencinin		D	EĞERLENDİRME			
Adı :	Bilgi	İşlem Basamakları	İş Alışkanlığı	Süre	TOPL	AM
Soyadı :	(%)	(%)	(%)	(%)		
Nu :					RAKAM	YAZI
Sınıfı :						
	Ders Öğre	etmeni:			İmza:	